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On the thermodynamics of DNA 
methylation process
Robersy Sanchez  1* & Sally A. Mackenzie  2*

DNA methylation is an epigenetic mechanism that plays important roles in various biological 
processes including transcriptional and post-transcriptional regulation, genomic imprinting, aging, 
and stress response to environmental changes and disease. Consistent with thermodynamic principles 
acting within living systems and the application of maximum entropy principle, we propose a 
theoretical framework to understand and decode the DNA methylation process. A central tenet of 
this argument is that the probability density function of DNA methylation information-divergence 
summarizes the statistical biophysics underlying spontaneous methylation background and implicitly 
bears on the channel capacity of molecular machines conforming to Shannon’s capacity theorem. 
On this theoretical basis, contributions from the molecular machine (enzyme) logical operations to 
Gibb entropy (S) and Helmholtz free energy (F) are intrinsic. Application to the estimations of S on 
datasets from Arabidopsis thaliana suggests that, as a thermodynamic state variable, individual 
methylome entropy is completely determined by the current state of the system, which in biological 
terms translates to a correspondence between estimated entropy values and observable phenotypic 
state. In patients with different types of cancer, results suggest that a significant information loss 
occurs in the transition from differentiated (healthy) tissues to cancer cells. This type of analysis 
may have important implications for early-stage diagnostics. The analysis of entropy fluctuations 
on experimental datasets revealed existence of restrictions on the magnitude of genome-
wide methylation changes originating by organismal response to environmental changes. Only 
dysfunctional stages observed in the Arabidopsis mutant met1 and in cancer cells do not conform to 
these rules.

Cytosine DNA methylation is a well-characterized epigenetic modification1,2 that plays important roles in various 
biological processes, including X-chromosome inactivation, genomic imprinting, transposon suppression, tran-
scriptional regulation, and the aging process3–6. Additionally, DNA methylation acts to preserve DNA stability7,8, 
which implies that the most frequent methylation changes serve to preserve thermodynamic stability of DNA 
molecules. These methylation changes comprise the background activity that is distinguished from targeted 
differentially methylated positions (DMPs) directed by methylation regulatory machinery9.

When evaluating samples from a single species under various experimental conditions, it is not difficult to 
find evidence by data analysis and simulation of differential methylation activity in control populations9. These 
DMPs are presumed to derive from fluctuations inherent to any stochastic process, a property summarized by 
the fluctuation theorem10,11. Regardless of a constant environment, statistically significant methylation changes 
occur in a control population with probability greater than zero, implying that stochasticity of the methylation 
process derives from the inherent stochasticity of biochemical systems12–16. Spontaneous natural methylation 
variation (“noise”) is expected within multicellular organisms, while methylation regulatory machinery (“signal”) 
directs organismal adaptation to environmental fluctuation15,16 and during development.

Models for the probability distribution of methylation variation (noise plus signal), expressed as information 
divergences of methylation levels, were derived for a constrained scenario17. Background methylation variation 
could be described in terms of a generalized gamma probability distribution or a member of a generalized gamma 
distribution family. However, such modeling17 only works as a transfer function where model parameters remain 
undefined, which is useful for practical applications in modeling the system’s output for each possible input but 
not for understanding thermodynamics of the methylation process.

A formal derivation of the generalized gamma model for the cytosine DNA methylation process considers 
continuous action of thermodynamics on biological processes and the consequent application of Jaynes’ Maxi-
mum Entropy Principle (MEP18), an information-theoretical account of the Second Law19. Statistical physical 
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assumptions are set on the channel capacity of molecular machines20,21, which is closely related to Shannon’s 
channel capacity. Biological molecular machines are assumed with energy scales comparable to the thermal 
energy kBT at ambient temperature with sensitivity to thermal fluctuation22,23.

The proposed modeling provides a physical interpretation for parameters not previously undertaken. We 
show that spontaneous variation in cytosine DNA methylation arises by continuous action in compliance with 
thermodynamic principles. Contributions from molecular machine logical operations to Gibb entropy (S) and 
Helmholtz free energy (F) are included in corresponding classical equations, which we subsequently apply to 
the estimation of S and F in experimental datasets of a plant epigenetics model system in Arabidopsis thaliana 
and in patients with different types of cancer. Data emerging from this type of analysis provide important insight 
into an organism’s biological state and, perhaps, to new approaches for early diagnostics.

Results
The flow chart presented in Fig. 1 summarizes the relevant analytical steps followed in our study. In biochemical 
terms, methylation changes to DNA molecules are biochemical reactions accomplished by two types of enzymes: 
methyltransferases and demethylases. These enzymes, as molecular machines, accomplish methylation changes 
through several logical operations that require, according to Landauer’s principle 24,25, a minimum energy dis-
sipation ε = kBT ln 2 per bit of information per machine operation26. At human body temperature, 310.15 K, 
ε = 1.784 J× mol−1 . Thus, any methylation change involves an associated energy dissipation E ≥ kBT ln 2 
per bit of information per machine operation, where kB and T stand for Boltzmann constant and the absolute 
temperature, respectively.

The application of MEP and constraints from molecular machine channel capacity describe the methylation 
process as a probability distribution f (E) of the energy dissipated E (Fig. 1). With this approach, estimations of 
the individual methylation system entropy and Helmholtz free energy are feasible, and biological implications 
of the theory can be assessed in appropriate whole-genome methylome datasets.

Statistical‑physical modeling of the methylation background process.  The most probable distri-
bution of methylation states for a DNA molecule, driven by spontaneous/random fluctuations, can be obtained 
by maximizing the thermodynamic entropy under general system constraints: i) 

∑

i πi = 1 and ii) 
∑

i πiEi = �E� , 
where πi is the (discrete) probability to observe dissipation of the energy value Ei , and 〈E〉 is the mathematical 
expectation of E . Under these assumptions, Jaynes’ MEP leads to Boltzmann distribution as the most probable 
distribution of the system18,27. Assuming that the energies Ei dissipated to reach the states i of the system are 
essentially a continuum, with some density A

(
E
β
, . . .

)

 of methylation changes and energies dissipated E, the 
probability to observe genome-wide energy dissipation between 0 and E can be estimated28 as:

where Z(β , ...) =
∫∞

ε
A(E,β , . . .) e

− E
β dE stands for the partition function of the system and β = kBT is a scal-

ing constant. That is, the number of methylation changes per unit energy at E ( A(E,β , . . .)dE ) is the number 
of methylation changes with energies dissipated per bit of information in the infinitesimal range E to E + dE. 
In Eq. (1), expression under the integral together with the partition function is, by definition 28, a probability 
density function denoted as:

(1)P(E ≤ E |β , . . .) =
1

Z(β)

∫
E

ε

A(E,β , . . .)e
− E

β dE

Figure 1.   Flow chart of the analytical steps followed in the study of methylation process thermodynamics. 
a, Application of Jaynes’ Maximum Entropy Principle (MEP18) leads to Boltzmann distribution as most 
probable for the methylation system18,24. Criteria derived from molecular machine channel capacity and 
further maximum likelihood estimations lead to the theoretical derivation of a generalized gamma distribution 
model as best to describe genome-wide methylation changes observable in an individual dataset. This model 
is expressed in terms of information divergence of methylation changes χ : E = χkBTθ

−1 . The state of the 
methylation system is described by generalized gamma probability density function, from which analytical 
expression for methylation system entropy is derived. Analysis of experimental datasets from Arabidopsis and 
human cancer allow expression of the fluctuation theorem in a DNA methylation context.
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Notice that for A(E,β , . . .) = 1 , the last equation reduces to the classical expression for Boltzmann distribu-
tion. Equation (2) is a general probabilistic model of the methylation background process conforming to an 
exponential decay law. According to Eq. (2), it is expected that for any case of f (E|β , . . .) , the probability to 
observe a methylation change will decline with the increment of energy dissipated per bit of information pro-
cessed by molecular machines (methyltransferase and demethylase activity). In the following sections, we set 
out information-thermodynamic constraints on the molecular methylation machinery that permit a maximum 
likelihood estimation of function f (E|β , . . .).

The channel capacity of methylation machinery.  A fundamental constraint to deriving a probability 
density function of DNA methylation changes involves physics of information in molecular machine operations. 
Machine capacity is closely related to Shannon’s channel capacity29 as the maximum amount of information that 
a molecular machine can gain per operation20. Following Schneider20, the machine capacity is bounded by: 
C = dspace log2

Py+Ny

Ny
 , where Py is the energy dissipated by a molecular machine,Ny energy of the thermal noise, 

and dspace the number of independently moving parts of a molecular machine involved in the operation21. Fol-
lowing Shannon29, the received signals have an energy average Ey = Py + Ny . We shall denote by E0 = Ny the 
energy dissipated with probability = 1 and dspace = ν − 1 to arrive at Cv = (ν − 1) log2

Ey
E0

 ( ν = α δ , Supplemen-
tary Information (SI) section A ), which implies:

Probability density function of the methylation background changes.  Equations 1 and 2 quanti-
tatively summarize the statistical physics underlying methylation changes that are not induced by the methyla-
tion regulatory machinery. Application of thermodynamic principles to chromatin dynamics tends to maximize 
Boltzmann entropy, leading to the most probable methylation density states. We sought to maximize the prob-
ability P

(
N1, . . . ,Nk ,N , p1, . . . , pk

)
 that N distinguishable methylation events result in N1, . . . ,Nk ( 

∑k
i Ni = N ) 

outcomes in the intervals [E0,E1), · · · , [Ek−1,Ek
)
 with probabilities p1, . . . , pk . Two basic assumptions were 

imposed on pi , Ni and Ei:

(1)	 probabilities pi are proportional to a specific power of the energies Ei:

(2)	 for each choice of α the following sum is a positive constant:

where Ei > 0 ; Ni ’s are assumed to be large numbers.
The first assumption derives from the interpretation of channel capacity of molecular machines given by 

Eq. (3) 20 as log2 pi ≤ Cv . The second assumption implies that parameter α carries information about the molecu-
lar machine, since ν = α δ (SI A). A maximum likelihood estimation of function f (E|β , . . .) , on a thermody-
namic basis, adapts the Lienhard and Meyer approach30 to the specific scenario of DNA methylation (provided 
in the SI A). The above assumptions (not given in30) lead to the generalized gamma probability density function:

where α > 0,β > 0, δ > 0 , and E > 0 . Consistent with Eq. (2), the analytical expression for the partition func-
tion derives from Eq. (6):

Hence, the density A(E,β , . . .) can be expressed as:

An information-theoretic divergence χ
(
p, q

)
 of methylation levels p and q will follow a distribution derived 

from Eq. (1) (generalized gamma, gamma, or Weibull distribution model) provided that it is proportional to the 
energy E. In this case, the energy dissipated E is per bit of information associated to the corresponding methyla-
tion changes. In general, for an information-theoretic divergence measure of methylation levels χ

(
p, q

)
 , we can 

follow the same analytical steps used to derive Eq. (6) (see SI A), which leads to a probability density function 
for the information divergence χ

(
p, q

)
:

(2)f (E|β , . . .) =
1

Z(β , . . .)
A(E,β , . . .)e

− E
β

(3)(ν − 1) log2
Ei

E0
≤ Cv

(4)pi =

(
Ei

E0

)ν−1

(5)
∑k

i=1
NiE

α
i = Econst

(6)f (E|α,β , δ) =
α

β Ŵ(δ)

(
E

β

)α δ−1

e
−

(
E
β

)α

(7)Z(β) =

∫ ∞

0

(
E

β

)α δ−1

e
−

(
E
β

)α

dE =
β Ŵ(δ)

α
,

(8)A(E|α,β , δ) =

(
E

β

)α δ−1

e
−

(
E
β

)α−1
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Assuming that E
kBT

=
χ
θ

 ( χ in bit units), the energy dissipated can be estimated as:

According to Landauer’s principle, a molecular machine working under ideal conditions dissipates the mini-
mum energy E = χkBT ln 2 , with θ = 1

/
ln 2 in ideal conditions. A more general distribution that includes the 

location parameter µ is given as:

which has mean:

and variance:

χ
(
p, q

)
 can be expressed in terms of the Hellinger divergence given by Sanchez et al. 9 or in terms of 

J-divergence31. The most frequent members of a general gamma distribution family found by goodness-of-fit 
tests for processed bisulfite sequence datasets from different species are Weibull ( δ = 1 ) and Gamma ( α = 1 ) 
distributions9,32, obtained as particular cases from the generalized gamma probability density function.

A connection with Shannon’s communication theory.  As suggested in past reports17,33, genome-
wide patterning of cytosine DNA methylation can occur at specific landmarks, statistically alluding to the exist-
ence of a methylation language/code33,34, where methylation messages are created within the framework of a 
communication system. In terms of Shannon’s communication theory, a communication system can be described 
by the conditional probability (density) Px

(
y
)
 , so that if message x is produced by the source, the recovered mes-

sage at the receiving point will be y 29. Shannon defined the rate R1 of generating information for a given quality 
v1 =

∫∫
ρ
(
x, y

)
P
(
x, y

)
dxdy of reproduction to be R = Min

Px(y)

∫∫
P
(
x, y

)
log

P(x,y)
P(x)P(y)

dxdy at fixed v1 and varia-

ble Px
(
y
)
.

In Shannon’s analysis, the conditional probability Py(x) that minimizes the rate R is given by the expression 
Py(x) = B(x)e−�ρ(x,y) , where B(x) is chosen to satisfy 

∫
B(x)e−�ρ(x,y)dx = 1 29, and ρ

(
x, y

)
 is a distance func-

tion. In this analysis, function ρ
(
x, y

)
 behaves as a “distance” between x and y to measure the unlikelihood, based 

on a fidelity criterion, to receive y with transmission of x. In function B(x) , the transmitted message x can be 
expressed at each cytosine site in terms of observed methylation levels in a treatment or a patient group. Meth-
ylation levels are estimated as: nCm

i

/
(nCm + nCi) , where nCm

i  and nCi are the number of times the cytosine is 
methylated and unmethylated at site i , respectively. The received message y can be specified as reference methyla-
tion levels, which could be the centroid of a group control or estimation from an independent subset of control 
samples from a control population. The function ρ

(
x, y

)
 can be expressed in terms of a symmetric information 

divergence χ
(
x, y

)
 between the methylation levels x and y. For a fixed reference y, the equality χ

(
x, y

)
= χ(x) 

makes it possible to choose B(x) as:

where dχ = χ ′(x)dx and � = 1
/
θ . The conditional probability Py(x) , if the recovered message at the receiving 

point is y and the original message produced by the source is x , can be reinterpreted (after change of variables) as:

This equation indicates the probability that, if the recovered message at the receiving point is y , then the 
information divergence between y and the original message x produced by the source is χ . These applications of 
Shannon’s reasoning lead to the following:

Theorem 1  If an organismal methylation system conforms to a communication system, then optimal methylation 
messaging is described by Eqs. (13), (9).

The Gibb entropy of the system.  The Gibb entropy of a system resulting from methylation changes is 
defined by the integral:

(9)f (χ |α, θ ,ψ) =
α

θ Ŵ(δ)

(χ

θ

)α δ−1
e−(

χ
θ )

α

(10)E =
χ

θ
kBT

(11)f (χ |α, θ ,µ, δ) =
α

θ Ŵ(δ)

(
χ − µ

θ

)α δ−1

e
−

(
χ−µ
θ

)α

(11a)ν =
µŴ(δ)+ θ Ŵ

(
δ + 1

α

)

Ŵ(δ)

(11b)σ =
µ2Ŵ(δ)+ 2µθ Ŵ

(
1
α
+ δ

)
+ θ2Ŵ

(
2
α
+ δ

)

Ŵ(δ)

(12)B(x) = χ ′(x)
α

θ Ŵ(δ)

(
χ(x)

θ

)α δ−1

e
−

(
χ(x)
θ

)α−1

(13)Py(χ |α, δ, θ ) =

∫ χ

0

α

θ Ŵ(δ)

(χ

θ

)α δ−1
e−(

χ
θ )

α

dχ
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(or simply S, since S(0) = 0) which yields the known analytical expression (SI B):

where ψ(δ) =
d lnŴ(δ)

dδ  stands for the digamma function. After considering Eq. (6), we can write:

Thus, entropy of an individual methylation system is split into a classical term and contribution from molecu-
lar machine activity:

A rough estimation of Gibb entropy for different organismal tissues/cells can be based on the information 
divergence χi after expressing energy Ei in terms of χi according to Eq. (9):

where the term φ(α, δ) = ψ(δ)
(
1
α
− δ

)
+ δ is a function of a model parameter associated to the number of 

independent activities of the molecular machine ( ν = α δ).
Since log2 x = ln x

/
ln 2 , Eq. (17) can be written as:

The terms in brackets from Eq. (17) and (17a) (at constant temperature) correspond to Shannon entropy H, 
which depends only on the distribution parameters in this case, numerical values that can be estimated from 
experimental data for each individual. Thus, the Shannon entropy H can be written as:

and

Following Schneider26, a decrease in methylome entropy:

requires a corresponding decrease in the uncertainty of genome-wide methylation changes:

Following a decrease in this uncertainty, the methylome gains information Im:

That is,

Or expressed in Joule per Kelvin:

Information-theoretical entropy and thermodynamic entropy yield identical outcomes, up to the product of 
Boltzmann’s constant by ln 2, even though they are independent functions19.

Thermodynamic potential of methylation changes.  Assuming that a balance exists between meth-
ylation and demethylation processes along each DNA molecule, the overall mass (number of molecules N) and 
volume (V) of the DNA molecule remain constant. This assumption holds in most experimental datasets since, 
for large genomic regions, the sum of the difference in methylation level is close to zero. Under this condition, 
and assuming a constant temperature (T), methylation changes and the micro-environment around them can be 
treated as a closed system to mass transport but not energy transfer. In statistical physics, this system is referred 
to as a NVT system, with the thermodynamic variables N, V, and T held fixed. Helmholtz free energy (F) repre-

(14)�S = −kB

∫ ∞

0
f (E|α,β , δ) ln f (E|α,β , δ)dE

(15)S = kB

(

ln
β Ŵ(δ)

α
+ ψ(δ)

(
1

α
− δ

)

+ δ

)

(15a)
S = kB ln

β Ŵ(δ)

α
︸ ︷︷ ︸

Classical entropy
term

+ kBψ(δ)

(
1

α
− δ

)

+ kBδ

︸ ︷︷ ︸

Molecular machine
moving parts contribution

(16)S = Sclassic + Smachine

(17)S = kB

(

ln
θ Ŵ(δ)

α
+ φ(α, δ)

)

(17a)S = kB ln 2

(

log2
θ Ŵ(δ)

α
+

φ(α, δ)

ln 2

)

(18)H = log2
θ Ŵ(δ)

α
+

φ(α, δ)

ln 2

(18a)S = kB ln 2H

(19)�S = Safter − Sbefore

(20)�H = Hafter −Hbefore

(21)Im ≡ −�H

(21a)�H = −
�S

kB ln2

(21b)Im ≡ −kB ln 2�H
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sents the driving force for NVT systems, the thermodynamic potential that measures “useful” work obtainable 
from a closed system at a constant temperature and volume.

Helmholtz free energy can be estimated from its definition: F = U − TS . Assuming that the molecular 
machine operations do not change the internal energy U of the system, we have: �F = −T�S , i.e.:

The same result derives from the Gibbs free energy definition: G = H − TS . Considering that the molecular 
machine operations do not change the system pressure ( �H = 0 ): �G = −T�S . Equation (22) roughly estimates 
how much Helmholtz free energy would be involved in methylation. Rough estimations based on the informa-
tion divergence χ can use the approach:

where β = kBT . Considering Eq. (16,) Helmholtz free energy can be split into the classical term and contribu-
tion of molecular machine activities:

According to Eq. (7): �Fclassic = kBT lnZ = kBT ln θ Ŵ(δ)
α

 . The particular cases of SG and F(β) for Weibull 
and Gamma distributions are obtained with parameter values δ = 1 and α = 1 , respectively. Substitution of 
Eq. (17a) in Eq. (23) yields:

At constant temperature,�F decreases with the increment of Shannon entropy of the system. The variation of 
Helmholtz free energy ��F = �Fafter −�Fbefore between two system states (before and after) can be expressed 
as:

After considering Eqs. (20), (21), and (25), an energetically favorable process is:

where a loss of information ( Im < 0 ) will be associated with a loss of free energy ��F < 0.

Biological implications of these observations.  The theoretical framework presented can be summa-
rized into two biologically intuitive hypotheses:

1.	 The entropy of methylation variation, measured with respect to some reference, coincides with observable 
phenotypic change. Thus, entropy provides a highly sensitive measure of organismal epigenetic state.

2.	 Disruption of methylation machinery will generate large fluctuations in the methylation signal outside of 
the expected range of fluctuations for normal/healthy tissues.

The first hypothesis rests on the premise that entropy is a thermodynamic state variable of the system, which 
means that its value is completely determined by current state of the system and not by how the system reached 
that state. The second hypothesis presumes that methylation machinery participates in organismal adaptation to 
environmental changes, and this process requires a non-equilibrium feedback control. To adapt to environmen-
tal change, organisms must rely on molecular mechanisms to sense changes and trigger regulatory adaptative 
responses35.

To test our hypotheses, we analyzed Arabidopsis thaliana and human methylome datasets. Functions for 
Gibbs entropy and Helmholtz free energy estimations, as given by Eqs. (17) and (22), respectively, are currently 
included in MethylIT R package (see Supporting Information). Entropy was estimated in Arabidopsis thaliana 
Col-0 ecotypes (wild type controls, WT), the methyltransferase mutant met136, and first- and third-generation 
heritable epigenetic memory states (nm1, mm1, and mm3) that derive as epigenetically modified progeny from 
a parental line following suppression of MSH1 expression37.

In plants, CG methylation is maintained by METHYLTRANSFERSE1 (MET1), and mutations that disrupt its 
activity induce genome-wide hypomethylation in CG context. Consequently, we expect to observe a significant 
loss of information in datasets from met1 plants relative to wild type. In the case of msh1 memory state, heritable 
epigenetic stress memory is observed following segregation of an MSH1-RNAi transgene, yielding ca. 20% of 
transgene-null progeny with a heritable memory phenotype of delayed maturation and sustained stress response 
(mm1, mm3), and the remainder appearing phenotypically unchanged and designated “non-memory” (nm1). 
The msh1 memory system was described previously37, and both memory (mm1) and non-memory (nm1) full-sib 
types display evidence of genome-wide cytosine methylation repatterning relative to wild type. Here, we include 
analysis of first-generation (mm1) and third-generation (mm3) samples from the same msh1 memory lineage 
and predict these variants to display lesser incremental effect on entropy variation than met1. Results shown in 
Table 1 confirm these predicted outcomes.

(22)�F = −β

(

log
β Ŵ(δ)

α
+ ψ(δ)

(
1

α
− δ

)

+ δ

)

(23)�F = −β

(

ln
θ Ŵ(δ)

α
+ φ(α, δ)

)

(24)�F = −βSclassic − βSmachine = �Fclassic +�Fmachine

(25)�F = −β ln 2H

(26)��F = �Fafter −�Fbefore

(26a)��F = T Im
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The effect of an msh1 suppression line on genome-wide methylation changes in epigenetic memory and 
non-memory progeny, generations 1 and 3, was reflected in a discrete increment of entropy and, consequently, 
loss of information: �S = Scontrol − Smutant < 026. This observation is further evidence of epigenetic effects that 
give rise to the memory state37. Loss of information in the met1 mutant was much greater than in msh1 memory, 
consistent with the profound effects of genome-wide CG demethylation; CG is the predominant genic methyla-
tion context in animals and plants.

Our results suggest that entropy can serve as a highly sensitive measure of the state of an organism. For exam-
ple, we also observed significant differences in the entropy values for Col-0 wildtype controls WT3 and WTmet1. 
Although these wildtype controls derive from the same Arabidopsis Col-0 accession, they differ in ontogeny. 
WTmet1 plants were grown under continuous light for 2 weeks in half-strength Gamborg’s B5 media, while WT3 
plants were grown to maturity on standard peat mix in pots maintained at 12-h daylength and sampled at bolt-
ing stage. We consider these differences in plant stage and growth conditions to account for the marked entropy 
differences observed.

In human cancer studies, Gibb entropies for different cancer cells and the corresponding healthy tissue/cell 
controls are presented in Table 2. Outcomes suggest that Gibb entropy increases for all cancer cells relative to 
their corresponding normal tissue. Since information divergences were computed with respect to the same refer-
ence individual, the observed entropy values suggest that breast metastasis cells underwent the most aggressive 
loss of information (assuming that experimental errors were not sufficient to affect the estimated values). The 
relationship between Gibb entropy and Helmholtz free energy predicts results shown in Table 3. After the meth-
ylation reprogramming that transforms differentiated healthy cells to a cancer state, the information potential of 
cancer cells appears to decrease dramatically relative to healthy cells. These data reflect an important, previously 
undocumented, means of assessing the state of a biological system. The overall results support our hypothesis 
that entropy estimation is a highly sensitive measure of organismal epigenetic state.

Table 1.   Gibb entropy1 estimated in several Arabidopsis mutants and corresponding Col-0 controls (WT). 
1 Entropy values were estimated using Eq. (17) and J-divergence 31. The values are given in J× K−1 ×mol−1 , 
after replacing Boltzmann constant by the Gas constant. 2 Loss of Information Im is given by Eq. (20a). 
3Helmholtz free energy ��F values were estimated using Eq. (26a) and J-divergence 31. The values are given 
in J×mol−1 . 4Symbols ‘**’ and ‘***’ indicate highly statistically significant differences at p-value < 0.01 and 
p-value < 10–16 between mutant or memory state, respectively. Symbol † indicates Wilcoxon paired test, 
otherwise testing was conducted applying linear mixed model.

Treatment

Gibb entropy by individual chromosome
2Im 3��F1 2 3 4 5

WT3-1 −12.095 −13.092 −12.854 −12.875 −12.398

WT3-2 −12.239 −13.202 −12.827 −12.955 −12.447

WT3-3 −12.582 −13.611 −13.312 −13.403 −12.872

WT3-4 −12.190 −13.289 −12.884 −13.008 −12.534

WT3-5 −13.010 −14.074 −13.806 −13.831 −13.333

nm1_1 −10.517 −11.671 −11.43 −11.447 −10.970

−0.612 **†4 −189.8**†

nm1_2 −10.344 −11.461 −11.193 −11.205 −10.758

nm1_3 −13.424 −14.234 −14.126 −14.175 −13.761

nm1_4 −10.332 −11.428 −11.16 −11.192 −10.74

nm1_5 −14.458 −14.972 −15.002 −14.804 −14.614

mm1_1 −12.452 −13.385 −13.153 −13.134 −12.807

−1.140*** −353.63***

mm1_2 −13.170 −14.111 −13.934 −13.978 −13.579

mm1_3 −10.485 −11.578 −11.391 −11.369 −10.947

mm1_4 −10.087 −11.177 −10.972 −10.982 −10.485

mm1_5 −9.969 −11.104 −10.818 −10.852 −10.298

mm3_1 −9.504 −10.593 −10.366 −10.370 −9.850

−2.627*** −814.79***

mm3_2 −9.617 −10.691 −10.537 −10.528 −10.014

mm3_3 −9.392 −10.475 −10.269 −10.264 −9.839

mm3_4 −10.336 −11.407 −11.292 −11.310 −10.825

mm3_5 −9.688 −10.736 −10.531 −10.526 −10.083

WTmet1_1 −3.751 −4.061 −3.958 −3.738 −3.700

WTmet1_2 −5.876 −6.242 −6.164 −5.959 −5.811

WTmet1_3 −5.869 −6.216 −6.070 −5.896 −5.727

WTmet1_4 −5.994 −6.347 −6.178 −5.995 −5.889

met1_1 2.183 2.129 2.065 1.980 2.085

−7.185*** −2228.45***met1_2 1.199 1.126 1.072 1.004 1.108

met1_3 2.032 1.993 1.923 1.848 1.946
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To test our second hypothesis, we first addressed the inference that in differentiated healthy tissue, the physi-
cal work accomplished by the methylation machinery must lead to a decrease in genome-wide methylation 
uncertainty, reflected in the values of (dimensionless) entropy k−1

B S . This inference is supported by regression 
analysis k−1

B |S| versus ν accomplished in Arabidopsis and human datasets (Fig. 2a,b). K-means algorithm was 
applied to clustering chromosomes from all cancer types into the two groups denoted in Fig. 2 as: ‘cancer I’ and 
‘cancer II’. Figure 2b shows that a subset of chromosomes from all cancer types appears to transition from a trend 
relatively close to healthy state (with negative slope, ‘cancer I’) to a weakly positive linear trend (‘cancer II’) in 
the direction of human embryonic stem cells (HESCs). A positive linear trend was also found in the Arabidopsis 
met1 mutant (Fig. 2a).

These results provide us with an empirical estimation of the entropy fluctuations through the regression 
analysis e−k−1

B |S| versus e−ν (Fig. 2c,d), which leads to the equation:

where η is a proportionality constant. Or equivalently:

As shown in Eq. (27a) a negative value for model parameter η (negative slope) is indicative of nonequilibrium 
feedback control. In an epigenetic context, nonequilibrium feedback control refers to the control accomplished 
by epigenetic regulatory machinery such as methyltransferases and demethylases. Figure 2c,d show that only 
the Arabidopsis met1 mutant, chromosomes of all cancer types, and embryonic stem cells showed a positive 
slope η > 0.

(27)e−k−1
B |S| = η

(
1− e−ν

)

(27a)e−k−1
B |S| = η − η e−ν

Table 2.   Gibb entropy1 estimated in human cancer cells and corresponding normal tissue. 1 Energy values 
were estimated using Eq. (16) and J-divergence 31. The values are given in J× K−1 ×mol−1. 2 HESC: human 
embryonic stem cell values are provided as reference for an undifferentiated tissue.

Tissue2

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12

Brain −16.34 −16.49 −16.65 −16.79 −16.48 −16.53 −16.51 −16.38 −16.13 −16.26 −16.02 −16.41

Glioma −1.54 −1.52 −2.29 −2.66 −1.26 −2.15 3.60 −0.82 −2.01 0.47 0.05 −1.38

Breast −14.13 −14.64 −14.77 −15.05 −14.62 −14.62 −14.56 −14.37 −14.08 −14.20 −13.88 −14.33

Breast Cancer −1.04 −0.09 0.50 1.94 2.89 −0.77 2.39 1.63 −1.27 2.39 2.19 1.25

Breast Metastasis 2.61 4.75 4.65 6.79 6.07 3.56 4.73 6.68 3.24 5.65 5.22 3.42

Colon −14.50 −14.68 −14.77 −14.48 −14.46 −14.87 −14.78 −14.52 −14.38 −14.71 −14.18 −14.74

Colon Cancer −9.93 −10.46 −10.87 −9.57 −9.47 −10.65 −10.09 −9.27 −10.33 −10.39 −9.70 −10.52

Colon Metastasis −6.65 −6.16 −6.40 −5.53 −4.80 −6.22 −5.18 −4.23 −6.44 −5.93 −5.21 −6.52

Lung −16.51 −16.78 −16.86 −17.19 −16.90 −16.82 −16.73 −16.80 −16.55 −16.62 −16.55 −16.65

Lung Cancer −8.38 −9.62 −9.90 −7.90 −6.79 −6.84 −8.03 −6.22 −8.52 −6.39 −6.31 −6.99

Adenocarcinoma 0.19 0.56 1.43 4.47 3.70 0.12 1.30 3.61 0.30 1.37 0.86 0.58

Squamous Cancer 2.92 5.30 4.77 6.07 6.25 5.67 5.10 7.12 3.86 5.66 5.90 3.71

hesc_1 1.99 1.96 1.95 1.80 1.86 1.95 1.98 1.90 1.99 1.96 1.91 1.97

hesc_2 1.66 1.62 1.61 1.41 1.49 1.61 1.65 1.53 1.64 1.60 1.54 1.64

hesc_3 1.73 1.70 1.69 1.53 1.60 1.69 1.72 1.64 1.73 1.70 1.65 1.72

13 14 15 16 17 18 19 20 21 22 X

Brain −16.56 −16.12 −16.39 −15.87 −15.96 −16.42 −16.10 −15.72 −15.99 −15.64 −17.69

Glioma −1.84 −1.45 −1.92 −0.65 −2.33 −1.69 3.93 0.10 −0.23 −0.97 0.94

Breast −15.05 −14.24 −14.49 −13.42 −13.61 −14.58 −13.10 −13.47 −13.47 −12.91 −15.32

Breast Cancer 3.12 0.29 0.05 2.12 −4.08 2.20 −3.64 0.28 1.06 −1.47 5.68

Breast Metastasis 6.29 4.67 3.00 3.55 2.14 6.90 2.61 4.86 5.77 2.88 7.50

Colon −14.56 −14.58 −15.03 −14.50 −14.42 −14.60 −14.11 −13.94 −14.32 −13.97 −15.25

Colon Cancer −8.89 −10.10 −10.52 −9.61 −10.71 −8.68 −9.87 −8.38 −8.80 −10.04 −8.93

Colon Metastasis −4.50 −6.11 −6.53 −5.74 −7.78 −5.41 −6.15 −4.43 −4.44 −7.69 −2.41

Lung −17.00 −16.66 −16.74 −16.10 −15.97 −16.90 −16.10 −16.07 −16.24 −15.62 −16.60

Lung Cancer −9.00 −8.80 −9.00 −7.55 −7.81 −9.59 −3.28 −5.39 −6.21 −9.85 −3.90

Adenocarcinoma 4.92 0.45 5.27 0.95 −1.69 4.41 −0.77 0.62 1.08 −1.24 4.54

Squamous Cancer 4.68 4.37 4.18 3.26 −0.42 6.82 0.76 5.80 3.65 1.06 7.84

hesc_1 1.88 1.95 1.98 2.10 2.08 1.90 2.09 1.97 1.99 2.15 0.52

hesc_2 1.51 1.61 1.65 1.76 1.79 1.53 1.80 1.59 1.62 1.84 0.05

hesc_3 1.61 1.69 1.72 1.84 1.83 1.63 1.85 1.70 1.73 1.90 0.21
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Equation (27) can be written as the quotient:

which is another way to express the fluctuation theorem in a DNA methylation context. The model parameter η 
characterizes the efficacy of feedback control 38.

Interpretation of Eq. (27) implies validity, up to experimental error, of the model:

derived from Eq. (27) after using the approach e−ν = 1− ν + O
(
ν2
)
 . Thus, in the experimental dataset we would 

also find the most general model:

where c ∈ O
(
ν2
)
 , which, within the limits of numerical error, approximates a constant not necessarily statistically 

significant. As shown in Fig. 2e,f, linear regression analysis confirms the statistical trend predicted by Eqs. (28) 
and (28a). With the exception of extreme conditions found in Arabidopsis mutant met1 (red points, Fig. 2a,c,e 
subplots), cancer chromosomes from group II and stem cells (magenta points), the remainder of the data sup-
port Eqs. (27) and (28).

(27b)e−k−1
B |S|

1− e−ν
= η

(28)e−k−1
B |S| ∼= ην

(28a)e−k−1
B |S| ∼= ην + c

Table 3.   Helmholtz free energy1 estimates in cancer cells and corresponding normal tissue. 1 Energy 
values are given in kJ×mol−1 . 2HESC: human embryonic stem cell values are provided as reference for an 
undifferentiated tissue. 2Healthy tissues and the corresponding cancer stages are shown grouped into an 
alternanting background color (light-gray and white).

Tissue2

Chromosome

1 2 3 4 5 6 7 8 9 10 11 12

Brain 5.066 5.115 5.165 5.206 5.110 5.128 5.120 5.081 5.003 5.044 4.967 5.089

Glioma 0.479 0.472 0.710 0.824 0.390 0.666 −1.115 0.255 0.622 −0.147 −0.016 0.427

Breast 4.382 4.541 4.581 4.668 4.535 4.535 4.515 4.458 4.366 4.403 4.304 4.446

Breast Cancer 0.321 0.028 −0.155 −0.603 −0.896 0.240 −0.741 −0.506 0.394 −0.741 −0.679 −0.389

Breast Metastasis −0.811 −1.472 −1.442 −2.105 −1.882 −1.103 −1.466 −2.072 −1.004 −1.751 −1.619 −1.062

Colon 4.498 4.554 4.581 4.490 4.484 4.611 4.585 4.504 4.460 4.563 4.397 4.570

Colon Cancer 3.081 3.243 3.371 2.970 2.937 3.302 3.129 2.876 3.203 3.224 3.009 3.263

Colon Metastasis 2.063 1.912 1.984 1.715 1.489 1.929 1.606 1.312 1.998 1.838 1.616 2.021

Lung 5.121 5.206 5.231 5.331 5.241 5.216 5.190 5.211 5.134 5.156 5.133 5.164

Lung Cancer 2.598 2.985 3.071 2.451 2.104 2.121 2.489 1.930 2.643 1.982 1.957 2.169

Adenocarcinoma −0.058 −0.174 −0.444 −1.387 −1.148 −0.037 −0.404 −1.119 −0.094 −0.425 −0.267 −0.181

Squamous Cancer −0.906 −1.644 −1.480 −1.882 −1.937 −1.759 −1.582 −2.208 −1.196 −1.754 −1.831 −1.150

hesc_1 −0.617 −0.608 −0.604 −0.557 −0.578 −0.604 −0.614 −0.591 −0.617 −0.607 −0.594 −0.612

hesc_2 −0.514 −0.503 −0.499 −0.437 −0.461 −0.500 −0.510 −0.474 −0.509 −0.496 −0.476 −0.509

hesc_3 −0.538 −0.529 −0.524 −0.473 −0.495 −0.525 −0.535 −0.507 −0.536 −0.526 −0.510 −0.533

13 14 15 16 17 18 19 20 21 22 X

Brain 5.135 4.999 5.084 4.922 4.950 5.094 4.992 4.877 4.959 4.851 5.486

Glioma 0.571 0.448 0.595 0.203 0.721 0.524 −1.218 −0.031 0.071 0.301 −0.292

Breast 4.666 4.416 4.495 4.162 4.220 4.523 4.064 4.176 4.178 4.005 4.751

Breast Cancer −0.966 −0.090 −0.017 −0.659 1.266 −0.681 1.128 −0.086 −0.329 0.454 −1.762

Breast Metastasis −1.950 −1.449 −0.931 −1.100 −0.663 −2.139 −0.809 −1.507 −1.789 −0.894 −2.325

Colon 4.516 4.521 4.661 4.498 4.471 4.527 4.376 4.322 4.442 4.331 4.730

Colon Cancer 2.758 3.132 3.264 2.979 3.322 2.693 3.061 2.599 2.728 3.113 2.768

Colon Metastasis 1.397 1.895 2.027 1.779 2.412 1.678 1.907 1.374 1.376 2.384 0.748

Lung 5.273 5.166 5.192 4.994 4.953 5.240 4.995 4.984 5.038 4.845 5.148

Lung Cancer 2.791 2.730 2.792 2.341 2.422 2.975 1.017 1.672 1.926 3.056 1.209

Adenocarcinoma −1.526 −0.141 −1.634 −0.296 0.523 −1.369 0.240 −0.192 −0.335 0.385 −1.409

Squamous Cancer −1.452 −1.356 −1.296 −1.010 0.129 −2.115 −0.236 −1.797 −1.132 −0.329 −2.431

hesc_1 −0.582 −0.606 −0.614 −0.651 −0.644 −0.589 −0.649 −0.612 −0.618 −0.666 −0.162

hesc_2 −0.468 −0.498 −0.511 −0.547 −0.554 −0.474 −0.557 −0.494 −0.503 −0.571 −0.015

hesc_3 −0.500 −0.526 −0.535 −0.572 −0.569 −0.507 −0.573 −0.528 −0.536 −0.588 −0.066
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Another way to arrive to Eq. (27a) is to consider the average of the sum of Boltzmann’s factors e−k−1
B |S| and 

e−ν . Results suggest that the average sum of e−k−1
B |S| + e−ν appears constant (Fig. 3). No statistical differences 

were found between the overall means of values from Arabidopsis (Fig. 3a) and humans (Fig. 3b), which leads 
us to postulate:

where η has a value close to 1. Thus, we can write 
〈

e−k−1
B |S|

〉

= 1−
〈
e−ν

〉
 and, considering nonequilibrium 

feedback control38, 
〈

e−k−1
B |S|

〉

= η
(
1−

〈
e−ν

〉)
 , which leads to Eq. (27). Small-range fluctuations are expected 

in normal healthy tissues, while notable fluctuation is expected in tissues/cells experiencing a disruption in 
methylation regulatory machinery. This last case is found in cancer cells shown in Fig. 3a, where the case of 
glioma departs substantially from healthy brain tissue and fluctuates at the level of stem cells. In biological terms, 
Eqs. (27–29) imply that the magnitude of genome-wide methylation changes originating in response to envi-
ronmental change is restricted. Disease would presumably occur by large fluctuations outside the range of 
expected variation in healthy tissues.

(29)
〈

e−k−1
B |S| + e−ν

〉

= η

Figure 2.   Evaluation of entropy fluctuations in experimental datasets from Arabidopsis and human patients 
with different types of cancer. Panels (a), (c), and (e) derive from Arabidopsis, panels (b), (d), and (f) from 
human data sets. The vertical dashed line in human panels indicates the cutpoint (estimated with K-means) 
splitting chromosomes (from all cancer types) into two groups (cancer 1 and cancer II). (a) and (b) regression 
analysis −k

−1
B

|S| versus the expected value (mean) ν = �χ� of the J-information-divergence χ . (c) and (d), 
regression analysis e−k

−1
B

|S| versus e−ν . (e) and (f), regression analysis e−k
−1
B

|S| versus ν. Regression analyses in 
panel (a, c), and (e) were accomplished for datasets from Arabidopsis memory lines over six generations and the 
met1 mutant (in the subplot). While regression analyses in panel (b, d), and (f) were accomplished for human 
datasets from patients with different types of cancer and tissue controls. Regression analyses support, up to 
experimental error, the regression model e−k

−1
B

|S| = −ηe−ν + η or, equivalently, e−k
−1
B

|S| = η
(
1− e

−ν

)
 . Only 

dysfunctional situations, such as the Arabidopsis met1 mutant, human breast cancer, human metastasis (in red), 
or undifferentiated embryonic stem cells (hesc, in magenta), fail to conform to the linear model.
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Discussion
We present a theoretical premise to account for DNA methylation variation behavior. Our results describe the 
information thermodynamics of cytosine methylation, extending well beyond the simple application of Eq. (9) 
as the null hypothesis required for methylation analysis. Results confirm that members of the generalized gamma 
probability distribution family, given by Eq. (6), quantitatively summarize the statistical physics underlying 
spontaneous methylation variation driven by random fluctuations. Parameters from Eq. (6) carry information 
about channel capacity of molecular machines20,21 that relates to Shannon’s capacity theorem.

Equation (9) can be interpreted as a conditional probability density distribution. The conditional probability 
interpretation of methylation (Eq. 13) assumes that the message remains constant in the control population 
and, under conditions of environmental variation or disease, changes in some subpopulation represented in 
treatment or patient datasets.

The conditional probability density Py(χ) indicates that if the recovered message at the receiving point is 
y, then Py(χ) will decline exponentially with the information divergence χ

(
x, y

)
 between y and the message x 

produced by the source. Thus, if DNA methylation conforms to a communication system, then optimal coding 
of the methylation message is described in Eq. (9).

Methylation changes that support DNA thermal stability are expected to be present in highest frequency and 
with relatively small divergence values. Observed data from control populations show information divergence 
values χ

(
x, y

)
 to be small, representing the housekeeping or background “noise” in the system. We expect that 

the probability P
(
χ
(
x, y

)
> χ0.95

)
 to observe methylation background fluctuation with a value χ

(
x, y

)
 greater 

than the 95% quantile χ0.95 is lesser than 0.05 ( P
(
χ
(
x, y

)
> χ0.95

)
= 1− P

(
χ
(
x, y

)
≤ χ0.95

)
 ). In other words, 

Eq. (9) can be applied as null hypothesis in a signal detection-based approach to discriminate the methylation 
regulatory signal (expected with values χ

(
x, y

)
> χ0.95 ) from methylation background9,32.

The methylation message is presumably encoded within the mechanical properties of the DNA molecule1,2. 
For example, flexibility or rigidity of the DNA double helix is required for regulating nucleosome folding and 
transcription factor (TF) binding to DNA sequence motifs39,40. Depending on DNA sequence context, the addi-
tion or removal of methyl groups to cytosine bases is predicted to alter these local physical properties1,2.

Gibb entropy and Helmholtz free energy, given by Eqs. (17) and (23), suggest a substantial distinction between 
classical statistical mechanics and statistical biophysics of the methylation process by considering the entropy 
contribution from the molecular machine (enzyme) through conformational changes, which is expressed in the 
term φ(α, δ)  from Eq. (17). Application of Eqs. (17) and (23) to experimental datasets can provide important 
biological insights. Results shown in Table 1 indicate that, as a thermodynamic state variable, the entropy given 
by Eq. (17) estimates the state of the methylation system consistent with phenotypic observations. The epigenetic 

Figure 3.   Fluctuations in the sum of Boltzmann’s factors e−k
−1
B

|S| + e
−ν . (a), boxplot with sum of Boltzmann’s 

factors in human datasets. Healthy tissues and the corresponding cancer stages are shown grouped into an 
alternating background color (light-gray and white), e.g., lung adenocarcinoma and lung squamous cell cancer 
are grouped together with healthy lung tissue and typical lung cancer. The graphic shows that all cancer stages 
experience fluctuations from the expected range for all healthy tissues (light-blue band). Cancer cells fail to 
conform to �e−kB|S| + e

−ν� = η . The pluripotent embryonic stem cells, which can differentiate into other organ 
tissues, fluctuate at a range (light-green band) far from differentiated healthy tissues. Fluctuations close to stem 
cell range suggest the possibility of a cancer stem cell subpopulation at a given cancer development stage. (b) bar 
plot with estimations of the average of Boltzmann’s factors for entire sets of Arabidopsis and human samples. 
The number of individuals for each chromosome are given on each bar in white. The statistical summaries for 
the five Arabidopsis chromosomes and 23 human chromosomes are shown at the top. The error bars correspond 
to standard deviation estimates on each chromosome. Results indicate statistically nonsignificant differences for 
the means of Boltzmann’s factors sums estimated for Arabidopsis and human datasets, supporting Eq. (27). Data 
and R script to build this figure are given in the SI document.
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memory lines in Arabidopsis produced an incremental effect on information loss observed from nm1 to mm3. 
A much greater difference in energy (−2228.45 J× K−1 ×mol−1 ) was observed between met1 mutant and its 
corresponding experimental control, where the minus sign “-” indicates that the transformation was energetically 
favorable ( ��F < 0 ) and that a loss of information ( Im < 0 ) occurred in this transformation (Eq. (26a)). Thus, 
the met1 mutant, which undergoes a genome-wide loss in CG methylation41, provides a reference for extreme 
methylation change and information loss (Table 1).

Results presented in Tables 2 and 3 are biologically intuitive when considering the transformation of a pluri-
potent embryonic stem cell to a differentiated cell. From ovule to embryo to multicellular development involves 
continuous increase in order, translated to net gain of information42,43. We suggest that this phenomenon is 
reflected in methylome features.

Our data indicate that transformation of normal cells to cancer cells leads to an increase in entropy and, 
consequently, a loss of information �S = Shealthy cells − Scancer cells < 0 26 ( Im < 0 ). Biological evidence similarly 
suggests that a loss of information from the original tissue occurs when cancer stem cells, a sub-population from 
within the tumor mass, derive from cancer cells44,45. Jointly, results from Tables 1 and 2 are in agreement with 
these known effects.

Fluctuation constraints revealed by Eqs. (27) to (29) are concerned with preserving the best coding and fidel-
ity of the methylation message at receiver point, permitting sufficient variation of methylation signal to ensure 
organismal adaptation to environmental change. This concept is supported by the results obtained with the 
extreme scenarios shown for Arabidopsis mutant met1, cancer samples, and stem cells, where outcomes do not 
hold to models given in Eqs. (27) to (29). The met1 mutation leads to an almost complete loss of CG gene-body 
methylation in Arabidopsis and a substantial ectopic CHG and CHH hypermethylation at genes and transpos-
able elements46. The methylation reprogramming induced by cancer cells is also well documented32,47 and the 
massive loss of information is supported by the results shown in Table 2.

The case of embryonic stem cells is different from met1 mutant and cancer cells. DNA methylation is not 
necessarily required in embryonic stem cells. Even when CG methylation is completely lost by combined knock-
out of three mammalian DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b, there is a minimal change in 
phenotype in undifferentiated stem cells48.

The experimental finding of Eqs. (27) to (29), as applied to methylome datasets from human and Arabidopsis 
chromosomes, may be informative about the DNA methylation process and potential influence of methylation 
in system buffering. Equation (27) predicts limits in the system’s capacity to confront and minimize the effect of 
random entropy fluctuations. As suggested in Fig. 2, surpassing these limits could reflect system breakdown 49–51.

The connection with Shannon’s communication theory reveals a future avenue for application of discrete-
state kinetics derived from a Markov model29 of the information source. A discrete-kinetic approach from the 
implicit Markov model of the source, and the evolution of such an epigenetic process, can be studied through the 
corresponding master equations that obey Chapman-Kolmogorov equations. Existence of epigenomic states is 
not only evident for the observable individual disease and heathy conditions, but also across the aging process52.

An intricate balance is expected for most epigenetic processes, which can be reversed53. That is, unlike 
DNA mutations, DNA methylation changes and consequent epigenetic alterations are, at least theoretically, 
reversible6. Thus, we can study the epigenomic process across organismal ontogeny as a stationary and ergodic 
Markov process.

As noted by Gorban54,“ “the only difference between the general first order (chemical) kinetics and master 
equation for the probability distribution is in the balance conditions: the sum of probabilities should be 1, whereas 
the sum of variables (concentrations) for the general first order kinetics may be any positive number.” From this 
perspective, the methylation regulatory signal, and associated epigenomic processes, reflects a system transi-
tioning between possible stationary states in which an organism must constantly adapt to new environmental 
conditions. Development of this modeling is beyond the scope of our current study.

The primary goal of this study was to establish a theoretical basis for understanding DNA methylation behav-
ior, but the practical outcomes of entropy estimates suggest that our results may have important implications 
for early diagnostics and assessing change in organismal state. Results suggest that information loss (entropy 
increments) and, consequently, DNA methylation reprogramming characterize cancer progression, suggesting 
that epigenetic mechanisms might be influential in cancer metastasis55,56. Our results also suggest that detection 
of early disease development stages on the basis of physical-informational chromosome states would be feasible.

Materials and methods
Biological experimental datasets.  The Arabidopsis thaliana methylome datasets (with results reported 
in Table 1) from bisulfite sequencing of msh1 memory and non-memory (normal looking) sibling plants with 
isogenic Col-0 wild-type control in Arabidopsis were downloaded from the Gene Expression Omnibus (GEO) 
Series GSE129303a and GSE118874.

The methylome datasets for met1 mutant and corresponding wildtype were taken from the GEO Series 
GSE122394. The fastq files from Arabidopsis methylome met1 mutant and corresponding wildtype datasets were 
downloaded from the European Nucleotide Archive (ENA, https://​www.​ebi.​ac.​uk/​ena/​brows​er/​home). The raw 
read counts for met1 methylated and non-methylated cytosines for further methylation analysis were obtained as 
follows: Raw sequencing reads were quality-controlled with FastQC (version 0.11.5), trimmed with TrimGalore! 
(version 0.4.1) and Cutadapt (version 1.15), then aligned to the TAIR10 reference genome using Bismark (version 
0.19.0) with bowtie2 (version 2.3.3.1). The deduplicate_bismark function in Bismark with default parameters 
was used to remove duplicated reads and reads with coverage greater than 500 were removed to control PCR 
bias. Methylated Cs (COV files) were acquired from Bismark methylation extractor with default parameters.

https://www.ebi.ac.uk/ena/browser/home
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The cancer and healthy tissues controls (Table 2) were downloaded from the GEO Series GSE52271. Blood 
B-cells CD19 (GSM1279518) was used as reference in the computation of information divergences J-divergences 
(JD). The Bi-seq dataset of Naive Human Embryonic Pluripotent Stem Cells have GEO accessions: GSM2041690, 
GSM2041691, and GSM2041692.

A more detailed description of these datasets is given in SI B.1.

Computational tools and statistical analysis.  The estimations of J-divergences, the best nonlinear fit-
ted model to member of the generalized gamma distribution (Eqs. 9 and 11), Gibb entropy, and Helmholtz 
free energy were accomplished using functions from MethylIT R package (version 0.3.2.4): gibb_entropy and 
helmholtz_free_energy, respectively (https://​genom​aths.​github.​io/​methy​lit/). The estimations of the Boltzmann’s 
factors shown in Figs. 2 and 3 were accomplished using MethylIT function boltzman_factor. All R scripts for 
Tables 1, 2, 3 results are available as SI.

The group comparison shown in Table 1 was accomplished in the lme4 R package (version 1.1–27.1) apply-
ing a linear mixed model with chromosome random effects with formula: entropy = group+ (1|chromosome).

Data availability
All the methylome datasets and software used in this work are publicly available at GitHub: https://​github.​com/​
genom​aths/​Methy​lIT (version 0.3.2.4). As specified in Material and Methods section (and in the SI), all methy-
lome raw data used in the scripts has been downloaded from GEO or ENA databases. Intermediate datasets 
used in the downstream analysis to support the conclusions of this report are available on GitLab at Penn State 
at https://​git.​psu.​edu/​genom​ath/​datas​ets. R script to accomplish all the computations are included within SI. So, 
readers can reproduce all the computations accomplished in this study.
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